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LuImnescence spectroscopy has been Increasingly recognized as an

Important tool for heamical analysis and as a probe Into fundamental

properties of chemical systems. Its sensitivity and selectivity are the

most commonly cited characteristics responsible for its widespread

applications. However, for most compounds in room temperature solutions,

the spectra are usually broad and extensive overlap may occur so as to

greatly diminish the specificity of the analysis and minimize the

sensitivity advantage In ulticomponent samples. With adequate apriorl

knowledge of the samples' one may devise techniques to analyze an analyte

in a mixture successfully with, for example, selective excitation (1),

synchronous scan (2), phosphorescence combined with fluorescence (3) and

other parameters to achieve greater selectivity or ultimately even greater

specificity. But such apriorl knowledge may be difficult to obtain.

Thus, as analytical samples become more complex and the need to avoid

cumbersome and time consuming separation Increases, it becomes obvious

that for luminescence measurements, specificity can generally be attained

only If one can measure simultaneously in the same experJment many

different properties associated with the luminescence from the analytes.

Hence, the desirability of oultiperametric measurements Is evident.

Recently, technological advances in microprocessors and specialty

devices have made measurements possible which at one time were deemed

formidable or impractical. This progress stimulates the development of

novel Instrumentation. Thus we witness a resurgence of activities In

areas involving properties which are less widespread and experimentally

more sophisticated to measure such as polarization and short lifetimes.



Figure shos some of the various parameters that can be monitored from a

luminescence sample. It Is clear that the luminescence technique Is

inherently selective as one can surely, from this host of properties, find

one that is quite selective for an analyte. In this paper, we will

discuss how we can exploit several of these parameters simultaneously -n

an experiment to achieve greater selectivity with a combination of unique

instrumentation and data reduction algorithms..

The Emission-Excitation Matrix (EED)

The selectivity of luminescence analysis can be greatly enhanced if

one can simultaneously examine a series of excitation and mission spectra

of a sample. We call such an array of luminescence intensity values an

emission-excltation matrix (EEM). This array is a function simultaneously

of multiple wavelengths of excitation and multiple wavelengths of

emission. Figure 2 is an example of a contour plot of an REM. This EN

represents a mixture of perylene and tetracene. It is instructive to note

the following characteristics of an EEl: (1) every row of the EEN

represents an mission spectrum of the ample excited at a given

wavelength set at the row; (2) a column represents the excitation spectrum

monitored at that specific wavelength of mission set at the column; (3)

any diagonal is a synchronous spectrum with the fixed wavelength intervals

between excitation and emission (AX's) determined by the wavelengtl

settings at the rows and columns of the diagonals. Thus we have

simultaneously exploited three spectral parameters using the ENM. Also,

familiarity with such an ZUN enables one to eatmate the number (lower

bound) of mitting components in the sample because of the mirror Image



rule (4), and the fact that the mission spectrum of a pure composent

under normal experimental conditions is independent of the wavelength of

excitation and vice versa. These properties constrain the kind of Imsage

that an emitter may mpart to the EM. One obvious application of this is

the ability to quickly determine if a so called one-component solution

contains significant emitting Impurities. Again, from Figure 2 we can

clearly see that perylene and tetracene overlap to quite an extent in both

the mission and excitation spectra. Uowever, we will also agree that

there are regions n the KEM which are uniquely, or specifically, perylene

or tetracene. This characteristic of an ZEN is a very useful method for

finger-printing applications. This has in fact been done for

identification of bacterial calls (5). Thus an ZEN can, at a glance,

provide the analyst with several Important and useful qualitative spectral

information about a given ample. Based upon this information,

intelligent decisions can be made regarding subsequent experimentations.

To generate the ZENs experimentally using the conventional

fluormeter with single channel detection is rather time consuming.

Acquisition times of 1-hour have been quoted for computeried systems (6).

The most rapid and elegant approach for ZEN acquisition is via a

video-fluormeter (7,8) which incorporates a unique multiple wavelength

excitation schme with a rapid scanning two-dimensional Imaging detector.

The video fluorometer can acquire E~es very rapidly with acquisition times

of a few tens of milliseconds to a few seconds. It is obvious at the

outset that such large data matrices require efficient computational

algorithms to perform data reductions and other manipulations such as data

display. Nonce, developeents in computer alsorithms for qualitative and

L .. _ ... -.. ....V



quantitative analyses must parallel Instrumentation and application

developments for the IRK.

For a pure one-component solution, an element of the 131 can be

written as:

iJ - iyj (1)

where z, Is the relative number of photons emitted at wavelength X ; yje

the relative umber of photons absorbed at wavelength A and a, a

concentration dependent parameter.

We can represent a wavelength sequenced set of (z I aa a column

vector x in the Xt space corresponding to the mission spectrum, and a

similar set of {yj) as another column vector y In the X space

representing the excitation spectrum. Then for a one-component EIM we can

write

N - amy (2)

where T denotes matrix transposition.

For an E with r emitting components, with negligible synerglstic

effects, the resulting EE is a linear am of the individual component

REMs:

r
I n~ (3)

n-i

r T()

" 1 n-n n



where n enumerates the components.

Based upon this mathematical formallem, several algoriths have been

developed for qualitative and quantitative analysis of multicomponent

EMs. In the case where there are not more than 2 emitting components in

the ample, one can deconvolute the ENM using eigenanalysis (9) to obtain

the excitation and mission spectra of each component. With a ratioing

method (10), the deconvolution of more than 2 components can be achieved.

For quantitative analysis, when the number of luminescing components is

known, the method of least squares (11) provides a rapid and reliable

means for quantification of each component. However such qualitative

information may not always be obtainable. Thus, the method of rank

annihilation (12) was developed to allow the analyst to quantify a

particular component of interest known to be present, without having to

know the identities of other mitters in the ample. The interested

readers are requested to consult the references for details and

applications of the algoriths. No attept will be made to discuss these

algoriths here.

Multidimensional Phosphorimetry

The phosphorescence phenomenon has been kmown for a long time. Levis

and Kasha in 1944 (13) showed that phosphorescence mission is due to a

transition from the excited triplet state to the ground state of a

molecule. In 1959, Kier et al. (14) published a paper on the analytical

applicability of phosphorimetry. Since then, Winefordner's group has been

the most active in contributing to the growth of the technique by

introducing new methodologies and demonstrating how phosphorlmetry can be



useful for diverse applications (15).

However, phosphorlmetry has not gained as widespread an acceptance as

fluormetry because of the need for cryogenic conditions and some

experimental sophistication. But recent developents in room temperature

phosphorescence (RTP) may change this situation. Thus, renewed interest

in the RTP technique has spurred active researches into some fundamental

properties of RTP In different matrices (16), development of Improved

instrumentation and expanding the range of applications (17).

Phosphorimetry has several attractive features. First, it is as

sensitive as fluorimetry and complements it. Thus, it helps to extend the

range of compounds meanable to luminescence analysis. Second, and most

important of all, the lifetime of phosphorescence is easily within the

reach of conventional electronic circuitry and thus time-resolved

phosphortmetry can be Implemented rather easily. With time-resolved

phosphorimetry, compounds which are spectrally very similar can nov be

distinguished through differences in their lifetimes. Consequently, a new

dimension is added to luminescence analysis. In 1972, Fisher and

Winefordner (18) introduced the concept of pulsed-source phosphorimetry

which permitted measurement of shorter lifetimes and increased the

sensitivity of the technique. With further sophistication in

instrumentation, including computerized control of a pulsed laser source

and data acquisition, Wilson and Miller (19) achieved time and component

resolved phosphormetry. In this technique, they obtained a complete

decay curve at one mission wavelength and then stepping through the

wavelength setting of the monochromator to obtain a two-dimensional data

matrix whose intensity values are a simultaneous functon of the emission

J_



wavelength and decay time. Goeringar and Pardue (20) obtained the ame

multidimensional data by using a vidicon array detector to acquire a

complete emission spectrum wthout haing to step through the wavelength

setting of a monochrcmator. Thus, the time for data acquisition was

reduced Immensely. They also applied sophisticated data reduction

strategies to analyze room temperature phosphorescence multicomponent

samples.

Recently, we have achieved an extra dimension for phosphorimetry by

use of a video fluorometer (21). We can acquire a set of phosphorescence

amisson-excitation matrices (PUN) along the decay curve. This allows

time resolution of an entire PERM. With this added dimensionality, we

have enhanced the capability of luainescece analysis for multicamponent

samples by providing greatir selectivity.

The video fluorometer acquires & 50 x 50 (emission x excitation) data

matrix (PEEK) In about 0.5 seconds. When the excitation of the ample is

terminated to record the phosphorescence, the intensity decays

exponentially. Even if the vIdicon starts scanning as soon as the

excitation beam is cut off, by the end of the scan, the intensity of the

phosphorescence would be diminished by an amount according to its

lifetime. Thus the PERK would be distorted because the spectral

information has been convoluted with the readout process. We have

overcome the problam by employing the Integration capability of the

vidicon. Thus, we avoid the need for extremely rapid scanning and the

accompanying complicated circuitry. This technique should be useful for

situations where similar Instrumental contraints occur.

We can show that even for a multicomponent mixture, the integrated



PEEM preserves the integrity of the PEEM. ence if we write

it M Ioe-kt (5)

where I is the initial intensity at time t - 0, It the intensity at any

time t and k is the first order rate constant, which Is inversely related

to the lifetime of the specie (i.e., k- I/T).

The integrated intensity for the time interval of tl, t 2 (tl<t 2 ) for

a component with rate constant k is given by

I ftJ2  I eA dt

1o  -kt I  -klt 2)
k I (e -e (6)

For an ideal r-component mixture, we can derive

r I -kt -kt
I 2 n- k a(e -e (7)

Thus, the Integrated PEEK is

r I -k -kt2 T
I(PEEM) a an k (e -e n2)T (8)

n-1 n

Consequently, Equation 8 is in a form useful for ratio-deconvolution

(10). Using Equation 2, and the me notation, we can define a standard

RE or the nth component

T
n no n yn (9)



for the mixture matrix

r
M 'N (10)

n-i ni _.n

where

n a nl/ano

For the ratio deconvolution of an r-component mixture, one needs a

set of r EEMs, i.e. 1 for 1 = 0, 1, 2, ..., r-1 to obtain a set of r

matrices, each of which contains a maximum of r emitters. With the set of

r equations in r unknowns, one gets

M* =A N* (12)

where M* and N* are a series of mixture (M1) and standard (Nn) matrices,

respectively. The A matrix is an r x r array of anl If A is

invertible, then we can solve Equation 12 using

A- 1 M* = N* (13)

The practical problem is to generate the set of M 1 experimentally.

There are several ways to achieve this (10). For phosphortmetry,

according to Equation 7, one can effectively vary the apparent

concentratikn of the components relative to each other in the mixture by

varying the integration periods. This can be effected very conveniently

as shown by our deconvolution of a synthetic two-component mixture of

A



coronene and phenanthrene.

Figure 3 shows a series of PERE taken by tb. video fluormeter with

different tie delays after the termination of excitation and where the

actual Integration begins. From this figure, one notices that

phenanthrene decays faster than coronene. This difference allows time

resolution. The deconvoluted spectra of the two components are shown in

Figure 4.

A similar technique involving the use of quenchers has also been

applied to achieve ratio deconvolution of fluorescence data (10). In this

case, selectivity is greatly increased by using a mixture of compleamentary

quenchers for a given multicomponent sample. However, care must be taken

to insure that Inner-filter effect and quenching are clearly

differentiated and taken Into account (22).

Fluorescence Polarization

Up to this point, we have discussed the Inherent selectivity and

specificity of the fluorescence technique. Even with this Inherent

selectivity and specificity, some compounds will still possess very

similar excitation and emission spectra such that spectroscopic resolution

is not possible. Consequently, many Investigators have found It useful to

exploit the more selective and specific parameter of polarization.

For our purpose, we will assume that the sample excitation source is

a beam of plane polarized light. Consequently, the greatest amount of

absorption occurs when the plane of the electric vector of this polarized

light corresponds to the direction of the transition moment in absorption.

At this point, It is useful to define the "degree of polarization", p, as



p m -(14)

'H ~'i

where I and IL are respectively the Intensities of the components of the

fluorescence parallel and perpendicular to the polarization plane of the

excitation beam. For a solution of randomly oriented molecules, p is

found to vary from + to -1/3 (4). Weber has indicated that maximum

polarization is observed when working with a dilute solution of the

fluorophore In a highly viscous solvent (23).

Many investigators have recognized the potential analytical utility

of fluorescence polarization measurements when other fluorescence

parameters have not proved fruitful. It is not possible to delineate all

of the examples cited in the literature. lwever, we have selected

examples which should have general analytical utility.

Conventional polarization measurements have usually employed

conventional fluormeters with the addition of necessary polarization

optics. Weber and Bablousian (24) Improved on conventional

instrumentation for measurement of polarization by using separate

photomultipliers to detect the I I and J components of fluorescence. More

recently, Hann (25) has developed a sensitive technique for polarization

measurement using a continuous rotating polarizer and lock in

amplification techniques.

Maple and Wehry (26) have recently discussed the use of

photoselection techniques for distinguishing between the overlapping

spectral bands of fluorophores In multicomponent mples. Bozhevol'nv et

al. (27) have examined the utility of fluorescence polarization spectra

" ..... .- --Iese '



for analyzing binary mixtures of organic molecules that have practically

coincident spectra. These investigators were successful in using

polarization spectra for the quantitative analysis of binary mixtures of

organic compounds which have significant overlapping luninescence spectra.

Seitz and co-orimrs (28) extended this approach to the selective

measurement of a component A in the presence of another component B using

the equation

IT I- I iT , jA .__) KACA (15)
jB IiA IJB

where T denotes total intensity (sun of contributions from A and B), XA is

a proportionality constant and CA is the concentration of A. The other

terms in the expression are the parallel and perpendicular components of

fluorescence for A and B. This derivation assumes that synergistic

effects are negligible. The applicability of this approach was

demonstrated using mixtures of Rhodemine B in the presence of fluorescein.

By far, the ost widely used applications of fluorescence

polarization have been in the areas of biochemistry and biology. For

example, fluorescence polarization is a standard technique for measuring

the rotational diffusion of molecules in confined systems such as

biological membranes. The technique is also useful for studying the

binding of small fluorophores to proteins in solution. These applications

are beyond the scope of this manuscript. foever, two pertinent

references (29, 30) should prove useful if additional information is

desired.

Our discussions above were restricted to the use of polarized



excitation for analytical measurements. Other polarizalon parameters are

available such as circularly polarized luminescence (31) and fluorescence

detected circular dichroim (32). These techniques have not been

extensively explored for analytical utility.

Conclusions

We can conclude from the above discussion that luaminescence

techniques are inherently well suited for multicomponent analysis. This

arises from the many parameters which can be exploited to achieve

specificity. It is interesting to note that no instrument has ever been

developed to exploit all of the available luaminescence parameters. Thus,

we can expect a proliferation of more sophisticated fluorescence

instruamentation with 1) new and Improved optical methods such as

Improvements In polarization optics, 2) better broad band pulse sources

and 3) more sophisticated detection devices.
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Figure I~ Parameters that can be monitored from a lulescence sample.

Figure 2.- Contour plot of a mixture ZEN contafInin piryleme and tetrceme.

Figure 3. Tim resolved PEEDs of a binary mixture of pbematbrene and
coronlee

Figure. 4. Deconyoluted spectra of phenauthrene and coronene.
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